53 research outputs found

    Rotating disk electrodes to assess river biofilm thickness and elasticity

    Get PDF
    The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s−1 in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t7 and t21, respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 ÎŒm (mean ± standard deviation, n = 6) in the fast flow section at t7 to 340 ± 140 ÎŒm (n = 3) in the slow flow section at t21. Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred ÎŒm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 ÎŒm rpm1/2, n = 8) than in the fast flow sections (790 ± 350 ÎŒm rpm1/2, n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method

    Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria

    Get PDF
    Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from −0.36 to −0.76 V/SCE, and peak amplitudes ranging from −9.5 to −19.4 ÎŒA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions

    Environmental Concentrations of Copper, Alone or in Mixture With Arsenic, Can Impact River Sediment Microbial Community Structure and Functions

    Get PDF
    In many aquatic ecosystems, sediments are an essential compartment, which supports high levels of specific and functional biodiversity thus contributing to ecological functioning. Sediments are exposed to inputs from ground or surface waters and from surrounding watershed that can lead to the accumulation of toxic and persistent contaminants potentially harmful for benthic sediment-living communities, including microbial assemblages. As benthic microbial communities play crucial roles in ecological processes such as organic matter recycling and biomass production, we performed a 21-day laboratory channel experiment to assess the structural and functional impact of metals on natural microbial communities chronically exposed to sediments spiked with copper (Cu) and/or arsenic (As) alone or mixed at environmentally relevant concentrations (40 mg kg-1 for each metal). Heterotrophic microbial community responses to metals were evaluated both in terms of genetic structure (using ARISA analysis) and functional potential (using exoenzymatic, metabolic and functional genes analyses). Exposure to Cu had rapid marked effects on the structure and most of the functions of the exposed communities. Exposure to As had almost undetectable effects, possibly due to both lack of As bioavailability or toxicity toward the exposed communities. However, when the two metals were combined, certain functional responses suggested a possible interaction between Cu and As toxicity on heterotrophic communities. We also observed temporal dynamics in the functional response of sediment communities to chronic Cu exposure, alone or in mixture, with some functions being resilient and others being impacted throughout the experiment or only after several weeks of exposure. Taken together, these findings reveal that metal contamination of sediment could impact both the genetic structure and the functional potential of chronically exposed microbial communities. Given their functional role in aquatic ecosystems, it poses an ecological risk as it may impact ecosystem functioning

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Lake Sediments From Littoral and Profundal Zones are Heterogeneous but Equivalent Sources of Methane Produced by Distinct Methanogenic Communities—A Case Study From Lake Remoray

    No full text
    International audienceLake ecosystems contribute significantly to atmospheric methane and are likely to becomeeven bigger methane emitters with the global spread of hypoxia/anoxia in freshwater ecosystems. Here wecharacterized the spatial heterogeneity of methane production potential, methane concentration, archeal andbacterial communities across Lake Remoray sediment during the summer period when hypoxic conditionssettle in the deepest part of the water column. It was hypothesized that methane concentration and productionwould be higher in the deeper part of the lake, our results showed that some littoral areas exhibited similar orhigher values than the deepest area. The full 16S rRNA gene sequencing dataset counted 41 OTUs affiliatedwith methanogenic species in abundances that depended more on sampling-site location than on the water depthgradient. The methanogenic co-occurrence network revealed the existence of five distinct sub-communities,suggesting the presence of different methanogenic niches across Lake Remoray. The variation in abundanceof the two larger methanogenic sub-communities was significantly related to methanogenesis potential andsediment methane concentration across-lake but further studies investigating their real activities would provideadditional insights. In a globally changing environment (temperature, eutrophication, 
) a better understandingof the functional specificities and characteristics of the potential of methane cycle actors would allow us tobetter predict their future implications for greenhouse gas production and mitigation

    Diversity, Functions and Antibiotic Resistance of Sediment Microbial Communities From Lake Geneva Are Driven by the Spatial Distribution of Anthropogenic Contamination

    No full text
    International audienceLake sediments are natural receptors for a wide range of anthropogenic contaminants including organic matter and toxicants such as trace metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls that accumulate over time. This contamination can impact benthic communities, including microorganisms which play a crucial role in biogeochemical cycling and food-webs. The present survey aimed at exploring whether anthropogenic contamination, at a large lake scale, can influence the diversity, structure and functions of microbial communities associated to surface sediment, as well as their genetic potential for resistance to metals and antibiotics. Changes in the characteristics of these communities were assessed in surface sediments collected in Lake Geneva from eight sampling sites in October 2017 and May 2018. These sampling sites were characterized by a large concentration range of metal and organic compound contamination. Variation between the two sampling periods were very limited for all sampling sites and measured microbial parameters. In contrast, spatial variations were observed, with two sites being distinct from each other, and from the other six sites. Benthic communities from the most contaminated sampling site (Vidy Bay, near the city of Lausanne) were characterized by the lowest bacterial and archaeal diversity, a distinct community composition, the highest abundance of antibiotic resistance genes and functional (respiration, denitrification, methanogenesis, phosphatase, and beta-glucosidase) activity levels. The second sampling site which is highly influenced by inputs from the RhĂŽne River, exhibited low levels of diversity, a distinct community composition, high abundance of antibiotic resistance genes and the highest bacterial abundance. Overall, our results suggest that local anthropogenic contamination, including organic matter and toxicants, is a major driver of the diversity and functioning of sediment-microbial communities in Lake Geneva. This highlights the need to consider benthic microbial communities and a suite of complementary ecotoxicological endpoints for more effective environmental risk assessments of contaminants in lake sediments

    Multi-scale phylogenetic heterogeneityof archaea, bacteria, methanogens andmethanotrophs in lake sediments

    No full text
    International audienceUnderstanding spatial microbial communityvariation is necessary to assess diversity patterns.In this study, we investigated spatial heterogeneity andvariability of functional and total microbial benthiccommunity structures in Lake Bourget, France. Communitystructure variability was determined verticallyby comparing three sediment layers per core, andhorizontally at the intra-site level (between up to threecores per sites) and between three sites. Bacterial,archaeal, methanotrophs and methanogens communitystructures were assessed by genotyping the 16SrRNA–23S rRNA intergenic spacer, 16S rRNA, pmoAand mcrA genes, respectively. The consequence ofpooling DNA extracts before genotyping was tested.After pooling, the OTU number decreased for allcommunities, but it had no effect on structure. At thecore scale, bacterial community structure significantlydiffered between the sediment layers, but archaeal,methanogens and methanotrophs community structuresonly differed significantly between the superficialand deeper layers. Changes in environmentalconditions affected microbial community structuresbetween sites (sediment carbonates, total carboncontents, median particle sizes, and water O2 saturation),but not intra-site, as no significant changes wereobserved at the horizontal scale. These spatial scalesshould be considered to understand their importancefor biogeochemical cycle when assessing benthicmicrobial community structure and diversity in lakes

    Seasonal Dynamics of Abundance, Structure, and Diversity of Methanogens and Methanotrophs in Lake Sediments

    No full text
    International audienceUnderstanding temporal and spatial microbial community abundance and diversity variations is necessary to assess the functional roles played by microbial actors in the environment. In this study, we investigated spatial variability and temporal dynamics of two functional microbial sediment communities, methanogenic Archaea and methanotrophic bacteria, in Lake Bourget, France. Microbial communities were studied from 3 sites sampled 4 times over a year, with one core sampled at each site and date, and 5 sediment layers per core were considered. Microbial abundance in the sediment were determined using flow cytometry. Methanogens and methanotrophs community structures, diversity, and abundance were assessed using T-RFLP, sequencing, and real-time PCR targeting mcrA and pmoA genes, respectively. Changes both in structure and abundance were detected mainly at the water-sediment interface in relation to the lake seasonal oxygenation dynamics. Methanogen diversity was dominated by Methanomicrobiales (mainly Methanoregula) members, followed by Methanosarcinales and Methanobacteriales. For methanotrophs, diversity was dominated by Methylobacter in the deeper area and by Methylococcus in the shallow area. Organic matter appeared to be the main environmental parameter controlling methanogens, while oxygen availability influenced both the structure and abundance of the methanotrophic community
    • 

    corecore